

Functional Distributional Semantics at Scale

Chun Hei Lo¹ Hong Cheng¹ Wai Lam¹ Guy Emerson²

¹The Chinese University of Hong Kong ²University of Cambridge

Summary

Functional Distributional Semantics (FDS) models lexical and sentence-level semantics with functions using distributional information. Previous implementations of FDS focus on subject-verb-object (SVO) triples only. We devise computationally efficient and linguistically motivated methods for applying FDS to arbitrary sentences.

Functional Distributional Semantics

Core idea. A sentence refers to a set of *entities*, and a word is a *predicate* that is true or false of entities. To generalize, an entity is represented as a **pixie**, and a predicate is a *semantic function* that maps pixies to probability of **truth**. The generative model of FDS is illustrated in Fig. 1.

Model Learning. Given the **observed predicates** R and argument structure A of a

Variational Autoencoder

Probabilistic Encoder. Given an observed DMRS graph with *n* pixies, the approximate posterior is given by:

 $q_{\phi}(z \mid R, A) = \prod_{i=1}^{n} \mathcal{N}(z_i; \mu_{Z_i}, \sigma_{Z_i}^2 I) \quad (4)$

For each pixie Z_i , the mean μ_{Z_i} and log variance $\ln \sigma_{Z_i}^2$ are inferred (f can be the identity function or tanh):

Figure 3. An encoder for inferring the posterior
 distribution of the pixie of *deliver* in '*talented singer deliver song emotionally*'. Dropout is applied to
 prevent learning shortcuts (in dashed lines).

Dependency Minimal Recursion Semantics (DMRS) graph (see Fig. 1 for an example graph), max $P(R \mid A)$.

Linguistic Challenges. Moving away from SVO triples means the semantics of adverbs, adjectives, adpositions, conjunctions, and quantifiers need to be addressed. Moreover, the undirected graphical model is thus more unsuitable for predicate-specific interpretations of argument roles (see Table 1).

Computational Challenges. Computing the prior of pixies is intractable in CaRBM (see Table 1). An alternative proposal of adopting a Gaussian Markov Random Field scales to $O(d^3n^3)$ time, which is prohibitive for larger graphs.

$$\mu_{Z_i} = W \quad h^{(-i)} + c_1 \\ \ln \sigma_{Z_i}^2 = w^\top h^{(Z_i)} + c_2$$

Probabilistic Decoder. Given the inferred posterior $q_{\phi}(z \mid R, A)$, we compute the probabilities of truth of predicates over the pixie distribution. Linear classifiers in (8) and (9) allow probit approximation in (10) for the expectation of $t^{(r,0)}(z_i)$, W.L.O.G. for $t^{(r,a)}(z_i, z_j)$ (S is the sigmoid function and $z_{i,j}$ is the concatenation of z_i and z_j).

$$t^{(r,0)}(z_i) = S\left(v^{(r,0)^{\top}} z_i + b^{(r,0)}\right)$$
(8)

$$t^{(r,a)}(z_i, z_j) = S\left(v^{(r,a)} z_{i,j} + b^{(r,a)}\right)$$
(9)

$$\mathbb{E}_{q_{\phi}}\left[t^{(r,0)}(z_{i})\right] \approx S\left(\frac{v^{(r,0)} \mu_{Z_{i}} + b^{(r,0)}}{(1 + \frac{\pi}{8}\sigma_{Z_{i}}^{2})^{\frac{1}{2}}}\right)$$
(10)

Final Objective. For each observed predicate r_i , we sample K negative predicates N(i), assuming them to be false of the inferred pixies. Reformulated the β -VAE with variance regularization, we maximize (11).

$$\tilde{\mathcal{L}}_{\phi,\theta}(R \mid A) = \sum_{i=1}^{n} \mathcal{C}_{i} + \sum_{(i,j,a) \in A} \mathcal{C}_{i,j,a} - \beta \frac{d}{2} \sum_{i=1}^{n} \left(\sigma_{Z_{i}}^{2} - \ln \sigma_{Z_{i}}^{2} \right)$$
where $\mathcal{C}_{i} = \ln \mathbb{E}_{q_{\phi}} \left[t^{(r_{i},0)}(z_{i}) \right] + \sum_{r' \in N(i)} \ln \mathbb{E}_{q_{\phi}} \left[1 - t^{(r',0)}(z_{i}) \right],$

$$\mathcal{C}_{i,j,a} = \ln \mathbb{E}_{q_{\phi}} \left[t^{(r_{i},a)}(z_{i},z_{j}) \right] + \sum_{r' \in N(i)} \ln \mathbb{E}_{q_{\phi}} \left[1 - t^{(r',a)}(z_{i},z_{j}) \right]$$

bottom: the simplified DMRS graph of the sentence, where R_1 =postman, R_2 =deliver, R_3 =mail and $A = \{(2, 1, ARG1), (2, 3, ARG2)\}$. Argument information only contributes to the world model in previous implementations (in dashed lines); we propose that it is used only in the lexical model (in green lines) (See Table 1).

Enriching the Lexical Model

Neo-Davidsonian Event Semantics. Different types of modifications, e.g., adverbial modification, can be handled by introducing event arguments:

 $deliver(e_1) \land ARG1(e_1, x) \land ARG2(e_1, y) \land quick(e_2, e_1)$

Semantic Functions. On top of the unary functions in (1), we add binary ones in (2):

$$P\left(T_{Z_e}^{(r,0)} = \top \mid z_e\right) = t^{(r,0)}(z_e) \tag{1}$$

$$P\left(T_{Z_e,Z_x}^{(r,a)} = \top \middle| z_e, z_x\right) = t^{(r,a)}(z_e, z_x)$$
⁽²⁾

This way, dropped arguments (see (3)) as well as adverbs (and adjectives) and conjunctions (see Fig. 2) are handled naturally. Table 1 shows a summary of the changes. $P\left(T_{Z_e}^{(r,0)} \wedge T_{Z_e,Z_y}^{(r,2)} = \top \mid z_e, z_y\right) = t^{(r,0)}(z_e)t^{(r,2)}(z_e, z_y)$ (3)

Experiments

Models Training

Data Set. *Wikiwoods*: 36m sentence–DMRS pairs (254m tokens) after preprocessing.

Tuning. Each of our models is tuned on the development set of RELPRON (described below), and have their outputs averaged over three random seeds.

Evaluation on Semantic Composition

Data Set. *RELPRON*: Retrieve the corresponding properties for each term.

Term (noun) Property (subj./obj. relative c	se) Model	MAP
watch telescope observatorydevice that astronomer use device that keep time device that observatory have building that astronomer own organization that army install	Pixie Autoencoder (FDS) Ensemble of PixieAE & vector add. (FDS)	0.19 0.49
	BERT _{BASE} (tuned; with full stop) BERT _{BASE} (tuned; without full stop)	0.67 0.20
•••	FDSAS _{tanh} FDSAS _{id}	0.48 0.58
2. Example instances in dev. set of RE	RON.	

Table 2. Example instances in dev. set of RELPRON. Underlined is a confounding pair with lexical overlap.

Table 3. Results on test set of RELPRON.

Evaluation on Verb Disambiguation

Data Sets. *GS2011* and *GS2013*: For each SVO–landmark pair, rate the semantic similarity of the verb in the SVO and the landmark verb; *GS2012*: With adjectives.

Adj-Subject-Verb-Adj-Object Landmark (verb) Similarity Annotations (1–7)

Figure 2. Extending the DMRS in Fig. 1 with adverbs and conjunctions.

Previous FDS	Our Proposal
$\mathcal{Z} = \{0, 1\}^d$	$\mathcal{Z} = \mathbb{R}^d$
$P(z \mid A) \propto \exp\left(\sum_{(i,j,a) \in A} z_i^{\top} W^{(a)} z_j\right) \text{ (CaRBM)}$	$P(r_i \mid z) \propto t^{(r_i,0)}(z_i) i \in \{1,3\}$
$P(r_i \mid z) \propto t^{(r_i, \circ)}(z_i) \forall i$	$P(r_2 \mid z) \propto t^{(r_2, \sigma)}(z_2)t^{(r_2, \tau)}(z_2, z_1)t^{(r_2, z)}(z_2, z_3)$
$\mathcal{V}\subseteq$ nouns and verbs	$\mathcal{V}\subseteq$ nouns, verbs, adjectives, and adverbs

Table 1. Comparison between previous and our proposed formulation for the DMRS in Fig. 1.

social service <u>meet</u> educational need	visit	1, 2, …
social service <u>meet</u> educational need	satisfy	7, 6, …
young boy <u>meet</u> little girl	visit	3, 2, …
small child <u>write</u> single word	spell	6, 7, …
local people <u>write</u> open letter	spell	2, 3, …
•••		• • •

Table 4. Example instances of GS2011 (GS2012, with the grey adjectives).

Model	ho	Model	ho	Model	ho
Joint Learning of Phrase Embed- dings (Ensemble)	0.52	Kronecker Model Role-Filler Averaging Model with	0.26	Dependency-based Composi- tional Semantics	0.33
Pixie Autoencoder (FDS)	0.41	Residual Learning		Practical Lexical Function Model	0.36
BERT _{BASE} (Baseline)	0.39	BERT _{BASE} (Baseline)	0.43	BERT _{BASE} (Baseline)	0.40
FDSAS _{tanh} FDSAS _{id}	0.44 0.44	FDSAS _{tanh} FDSAS _{id}	0.44 0.46	FDSAS _{tanh} FDSAS _{id}	0.44 0.45
Inter-annotator agreement	0.58	Inter-annotator agreement	0.59	Inter-annotator agreement	0.46
Table 5. Results on GS20	11.	Table 6. Results on GS20	13.	Table 7. Results on GS20	12.

12th Joint Conference on Lexical and Computational Semantics | Canada

chlo@se.cuhk.edu.hk