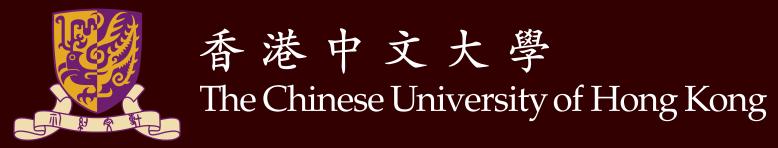
Distributional Inclusion Hypothesis and Quantifications: Probing for Hypernymy in Functional Distributional Semantics



Wai Lam¹ Hong Cheng¹ Guy Emerson² Chun Hei Lo¹ ¹The Chinese University of Hong Kong ²University of Cambridge

Our Hypothesis

Functional Distributional Semantics (FDS) learns hypernymy from corpora that the distributional inclusion hypothesis (DIH) strictly holds.

DIH and Quantifications

DIH. r_2 is a hypernym of r_1 iff r_1 's characteristic contexts $\subseteq r_2$'s.

Quantifications. A corpus with only universally quantified statements results in the reverse of DIH (rDIH).

Entity Vectors. $z \in \mathbb{R}^d$

Truth-Conditional Semantic Functions.

 $t^{(dog)}(z) = P\left(dog(z) = \top \mid z\right)$ $= \operatorname{sigmoid} \left(v^{(dog)^{\top}} z + b^{(dog)} \right)$ Representing Hypernymy. $\forall z \text{ s.t. } \|z\|_2 \le 1 : t^{(dog)}(z) < t^{(animal)}(z)$ which is true iff s(dog, animal) > 0, where $s(r_h, r_H) = b^{(r_H)} - b^{(r_h)} - \left\| v^{(r_H)} - v^{(r_h)} \right\|_2$ Model Training. By Lo et al. (2023), given a DMRS graph, e.g., some $\xrightarrow{\text{RSTR}} \text{dog} \xleftarrow{\text{ARG1}} \text{bark}$ Variational Inference: $q_{\phi}(z \mid \xleftarrow{\text{ARG1}} bark)$ Reconstruction: $\max \ln \mathbb{E}_{a_{\phi}(z| \leftarrow ARG1} bark)} \left[t^{(dog)}(z) \right] + \dots$ **New objective (FDS** $_{\forall}$). Optimization is performed over regions of the entity vector space for handling universal quantifications.

FDS

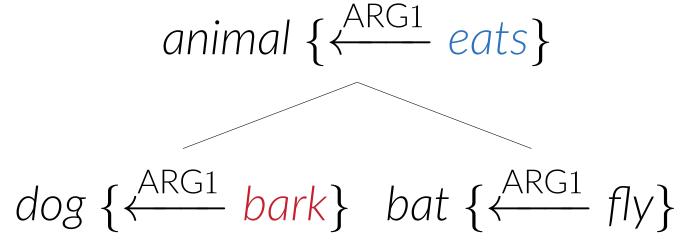


Figure 1. A taxonomic hierarchy of nouns. Next to each noun are the contexts applicable to it and its descendants.

Corpus 2 (rDIH)
every dog <mark>barks</mark>
every dog eats
every bat flies
every bat eats
every animal eats

Table 1. Corpora generated from the hierarchy in Fig. 1.

Experiments on Synthetic Data Sets

Creating r(DIH) Corpora from Taxonomic Hierarchies.

Experiments on Real Data Sets

Training Data. Wikiwoods: 36m DMRS graphs

Evaluation on Hypernymy Detection.

1. Create a Taxonomic Hierarchy. E.g.,

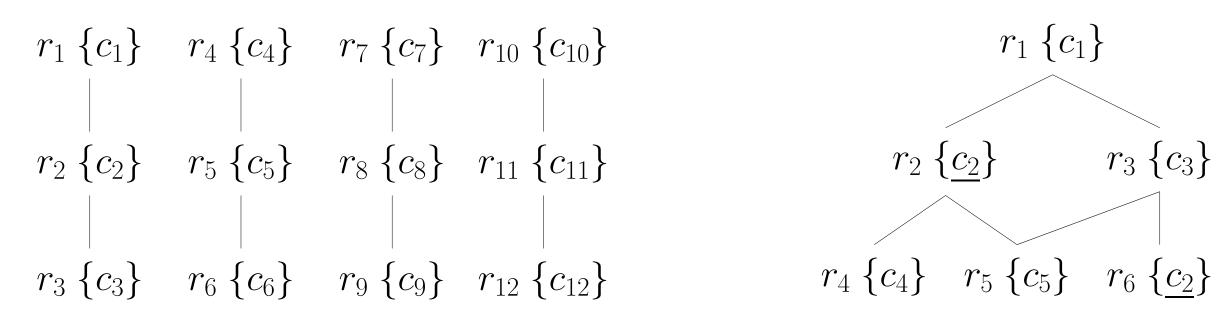


Figure 3. DAG with shared contexts (underlined; $H_{DAG'}$)

 $r_3 \{c_3\}$

2. Choose a Hypothesis. The DIH or rDIH

Figure 2. Four chains (H_{chains})

3. Create a Corpus. '[quantifier] [noun] [context word]'

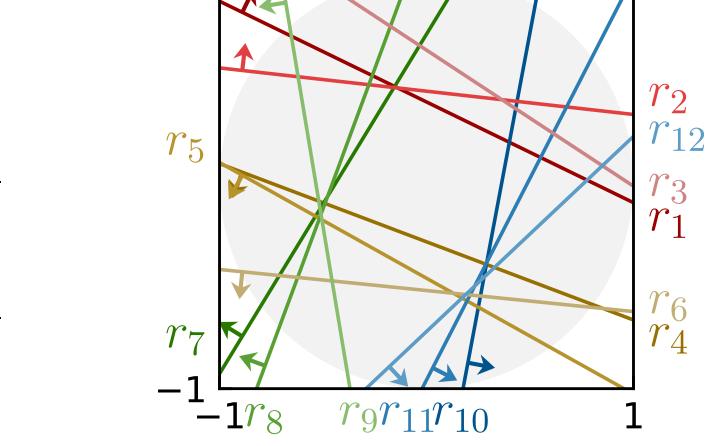
.995

.221

Evaluation on Hypernymy Detection.

.990

.925



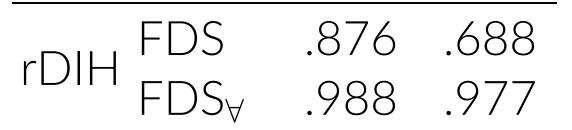
Model	Kotlerman2010	LEDS	WBLESS	Evalution
Cosine	.701	.782	.620	.526
WeedsPrec	.674	.897	.709	.650
invCL	.679	.905	.707	.620
FDS	.473	.650	.508	.459
FDS_\forall	.550	.735	.655	.554

Table 3. AUC of s on the test sets.

Model	Hyponymy	Co-hyponymy	Meronymy	Random
Cosine	.511	.369	.683	.924
WeedsPrec	.754	.615	.631	.843
invCL	.745	.568	.652	.872
FDS	.596	.288	.561	.587
FDS_\forall	.783	.625	.527	.691

Table 4. AUC of s on the sub-categories of WBLESS.

Takeaway 1. FDS_{\forall} is better than FDS on hypernymy detection from real corpora.



Hyp. Model H_{chains} $H_{\text{DAG'}}$

FDS

FDS∀

DIH

Table 2. AUC of *s* learnt from different taxonomic hierarachies.

Figure 4. $t^{(r)}(z) \ge 0$ learnt from DIH corpus of H_{chains} .

Takeaway 1. Our hypothesis is confirmed.

Takeaway 2. FDS_{\forall} can handle rDIH corpora well.

Takeaway 3. Given (1) fox's contexts \subset mammal's and (2) dog shares many contexts with fox, FDS/FDS_{\forall}: dog is likely a mam*mal.* (Results in the paper!)

Takeaway 2. FDS_∀ learns generality more effectively than similarity.

(Takeaway 3.) Although quantifications are annotated in DMRS graphs of Wikiwoods, processing multiple scopes requires a richer world model than can be encoded in a taxonomic hierarchy.

Big Picture. To acquire more faithful truth-conditional representations of words from distributional information.

62nd Annual Meeting of the Association for Computational Linguistics | Bangkok