### Distributional Inclusion Hypothesis and Quantifications: Probing for Hypernymy in Functional Distributional Semantics Chun Hei Lo, Wai Lam, Hong Cheng, and Guy Emerson







#### **Functional Distributional Semantics (FDS)**

Framework that learns distributional semantics with truth-conditional interpretations

#### **Distributional Inclusion Hypothesis (DIH)**

 $r_2$  is a hypernym of  $r_1$  iff contexts of  $r_1$  occur also with  $r_2$ , e.g.,

some dog {eats, runs}

some animal {eats, runs, flies}

#### **Major Finding**

FDS models learn hypernymy when the training corpus follows the DIH

# **Functional Distributional Semantics (FDS)**

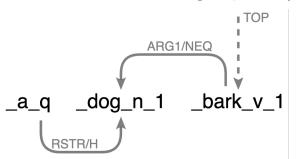
Entity Vectors  $z \in \mathbb{R}^d$ 

Truth-Conditional Semantic Functions  $t^{(\text{dog})}(z) = P(\text{dog}(z) = \top \mid z)$  $= \text{sigmoid}(v^{\top}z + b)$ 

# **Functional Distributional Semantics (FDS)**

### **Model Training**

VAE-like objective on semantic graphs (Lo. et al, 2023)



Variational Inference: z is something that barks~  $\exists x$ : bark(x); what is x?Reconstruction: $t^{(dog)}(z)$  1 and  $t^{(ice)}(z)$ ~ update  $dog(x) = \top$ ,  $ice(x) = \bot$ 

Trained with less data but competitive with BERT on some lexical semantic tasks!

# **Representing Hypernymy in FDS**

**Hypernymy**  $\forall x \in D: \operatorname{dog}(x) \Longrightarrow \operatorname{animal}(x)$ 

Hypernymy Condition as Fuzzy Set Containment  $\forall z \text{ s.t.} ||z||_2 \le 1: t^{(\text{dog})}(z) < t^{(\text{animal})}(z)$ 

### **Research Questions**

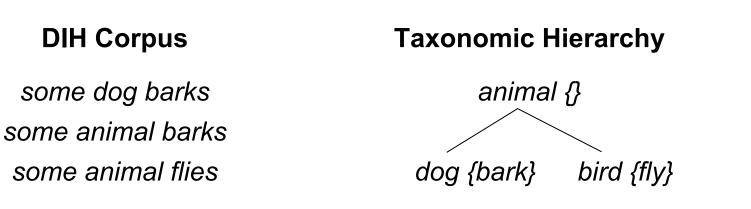
Can FDS learn hypernymy from a corpus?

If yes, on what corpus? And how?

### **Our hypothesis**

FDS models learn hypernymy when the training corpus follows the DIH

### Intuition behind our Hypothesis



 $t^{(\text{dog})}(z_1)$  **1** and  $t^{(\text{animal})}(z_1)$  **1**, where  $z_1$  describes something that barks  $t^{(\text{animal})}(z_2)$  **1**, where  $z_2$  describes something that flies

# **Reverse of DIH (rDIH)**

DIH does not hold in general due to *collocational* (Rimell, 2014) and *pragmatic* reasons (Pannitto, 2018). We suggest that *quantifications* are also pivotal!

#### rDIH when all statements are universally quantified

 $r_2$  is a hypernym of  $r_1$  iff contexts of  $r_2$  occur also with  $r_1$ 

every dog {eats, breathes, barks}

every animal {eats, breathes}

## Hypernymy Not Respected under rDIH

### rDIH Corpus

### **Taxonomic Hierarchy**

every dog barks every dog eats every animal eats

animal {eat}

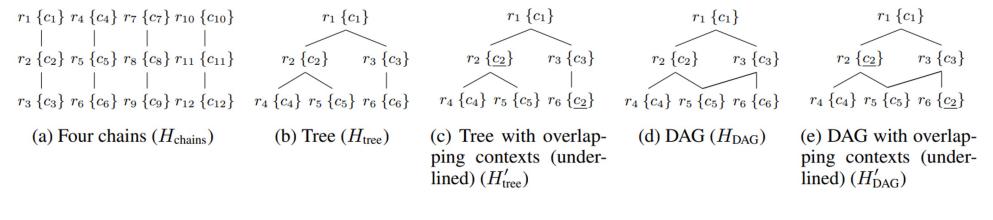
 $t^{(\text{dog})}(z_1)$  **1** and  $t^{(\text{animal})}(z_1)$  **1**, where  $z_1$  describes something that eats  $t^{(\text{dog})}(z_2)$  **1**, where  $z_2$  describes something that barks

We devised an alternative FDS training objective for  $\forall$  (FDS<sub> $\forall$ </sub>)

# **Experiments with Synthetic Data Sets**

### **Creation of Each of the Synthetic Data Sets**

#### 1. Create a taxonomic hierarchy



- 2. Choose a hypothesis:
- DIH or rDIH

3. Create a corpus:

<quantifier> <noun> <context>

## **Experiments with Synthetic Data Sets**

AUC of hypernymy score by FDS models trained on DIH corpora

| Model         | $H_{\rm chains}$ | $H_{tree}$ | $H'_{\rm tree}$ | $H'_{\rm DAG}$ | $H'_{DAG}$ |
|---------------|------------------|------------|-----------------|----------------|------------|
| FDS           | 0.990            | 0.994      | 0.995           | 0.995          | 0.995      |
| $FDS_\forall$ | 0.925            | 0.206      | 0.210           | 0.214          | 0.221      |

## **Experiments with Synthetic Data Sets**

AUC of hypernymy score by FDS models trained on rDIH corpora

| Model         | $H_{\rm chains}$ | $H_{tree}$ | $H'_{\rm tree}$ | $H'_{\rm DAG}$ | $H'_{\rm DAG}$ |
|---------------|------------------|------------|-----------------|----------------|----------------|
| FDS           | 0.876            | 0.842      | 0.793           | 0.752          | 0.688          |
| $FDS_\forall$ | 0.988            | 0.983      | 0.978           | 0.981          | 0.977          |

### **Experiments with Real Data Sets**

AUC of hypernymy score by FDS models trained on Wikiwoods

| Model         | Kotlerman2010 | LEDS  | WBLESS | Evalution |
|---------------|---------------|-------|--------|-----------|
| FDS           | 0.473         | 0.650 | 0.508  | 0.459     |
| $FDS_\forall$ | 0.550         | 0.735 | 0.655  | 0.554     |

## More Discussions in the Paper on ...

Hypernymy representation in FDS

• *Probabilisitic* vs *fuzzy* interpretation of truth-conditional semantic functions

Distributional generalization of FDS on hypernymy

- fox is a mammal, not sure if dog is
- *fox* and *dog* share the same contexts in corpus
- FDS: *dog* is likely a *mammal*

∀-objective encoding generality more effectively than similarity

• Better at distinguishing between hypernymy and {hyponymy, co-hyponymy}

# **To Conclude**

### **Question:** Can FDS learn hypernymy from a corpus?

Answer: Yes

Question: On what corpus?

Answer: A corpus that follows DIH

### **Big picture**

To acquire faithful truth-conditional representations from distributional information